Epigenetic Factors to Reduce Breast Cancer Risk – Part 4

My goal in this series of articles is to empower you with information about epigenetic factors that can be utilized to not only reduce your risk of breast cancer, but also to help you heal from breast cancer should you be diagnosed with it.

For more information on my personal reasons for putting this information together, see Part 1 of the series, Epigenetic Factors To Reduce Breast Cancer Risk Part 1.

This article, Part 4 of the series, will cover the phytonutrients that ease or prevent cancer-promoting inflammation. Chronic inflammation in the body is a known risk factor for various cancers, including breast cancer. Eliminating inflammation is a valid strategy for both preventing cancer and for helping to treat it. Science recognizes this and, indeed, many anti-inflammatory cancer drugs are also used to treat inflammatory diseases such as rheumatoid arthritis. [1]

Once a cell becomes malignant, inflammation is a powerful promoter of cancer. Fortunately for us, nature provides us with hundreds of natural anti-inflammatory phytochemicals that work at the gene level to counter inflammation. Here are some of the best ones.


Alpha-amyrin, beta-amyrin – found in certain plants including Launaea procumbens, hemp seeds, sunflower seeds [2]

Alpha-linolenic acid (ALA), an omega 3 fat found in buckwheat bran, chia, chickpeas, flaxseed, green beans, hemp seeds, macadamia nuts, pecans, pistachio nuts, pumpkin seeds, quinoa, red beans, soybeans, walnuts [3]

Anthocyanins, plant pigments, found in acai, Anasazi beans, apples, black beans, bilberries, black raspberries, black rice, blackcurrants, blueberries, chickpeas, elderberries, grapes, pomegranates, purple beans, purple carrots, purple sweet potatoes, sorghum bran, strawberries, walnuts [4], [5]

Apigenin, a flavonoid found in celery, chamomile tea, chickpeas,  clove, grapefruit, onions, oranges, parsley, peppermint, rice bran, sorghum bran [6], [7]

Berberine, an alkaloid found in goldenseal, barberry, Oregon grape, Huang bai, tree turmeric [8], [9]

Beta-sitosterol, a plant sterol found in almonds, amaranth, barley, black rice, Brazil nuts, flaxseed, hemp seed, macadamia nuts, oats, pecans, pistachio nuts, pumpkin seeds, quinoa, rice bran, sesame seeds, soybeans, sunflower seeds, walnuts, wheat, wheat bran [10], [11]

Betaine, an amino acid created in the body from choline and glycine. Found in amaranth, barley, beef, beets, oats, quinoa, spinach, sunflower seeds, sweet potato, wheat, wheat bran [12], [13]

Bio-chanin A, an isoflavone found in alfalfa sprouts, astragalus, cashews, chickpeas, kidney beans, pinto beans, red clover [14], [15]

Caffeic acid, a polyphenol found in adzuki beans, apples, apicots, barley, bee propolis, buckwheat bran, brown rice, chia seeds, chickpeas, coffee, flaxseed, goji/wolfberry, hazelnuts, lentils, oats, quinoa, sorghum bran, soybeans, sunflower seeds, wheat [16], [17]

Capsaicin, a phytochemical in hot chili peppers, cayenne [18], [19]

Catechins and epicatechins, polyphenols found in adzuki beans, almonds, amaranth, apricots, bilberries, buckwheat bran, chickpeas, green beans, green tea, lentils, pecans, sorghum bran, wheat bran [17], [20]

Chlorophyll, a plant pigment found in all green plants and herbs, blue-green algae, grapes, green beans, matcha tea, pistachio nuts, pumpkin seeds, seaweed, spirulina, sprouts, wheatgrass [21]

Conjugated Linoleic Acid (CLA), from (preferably) organic grass fed beef, butter from grass-fed cows raised organically, full fat (preferably raw) dairy products like cream, milk, yogurt or cheese [22], [23], [24]

Curcumin, the active phytochemical polyphenol in turmeric [25], [26], [27]

Cyanidin-3-glucoside – found in acai, amaranth, bilberries, black raspberries, blackberries, blackcurrants, cherries, black rice, durian, elderberries, lychee, maqui, mulberries, pistachio nuts, red beans, strawberries [72]

Ellagic acid, a polyphenol found in apples, black raspberries, blackberries, Brazil nuts, cranberries, pomegranates, pecans, raspberries, strawberries, walnuts [28]

Essential oils – many essential oils have potent anti-inflammatory activity, including:
Basil [29]
Black Pepper [30]
Cedarwood [31]
Cinnamon [32]
Citrus essential oils [33]
Clove [34]
Copaiba [35]
Frankincense [36]
Ginger [37]
Lavender [38]
Myrrh [36]
Rosemary [39]
Ylang ylang [40]

Fenugreek – herb [73]

Fiber, found in beans, bran, whole grains, nuts and seeds, is associated with decreasing systemic inflammation [41], [42]

Gamma linolenic acid (GLA), an omega-6 fatty acid found in barley, blackcurrant seed oil, borage seed oil, evening primrose oil, hemp seeds, oats, spirulina [43], [37]

Genistein, an isoflavone found in chickpeas, kidney beans, quinoa, soybeans [44], [45]

Ginger, as the root, powder and essential oil form [37]

Glucosinolates, sulforaphane and isothiocyanates – phytochemicals found in Brassica vegetables including arugula (rocket), bok choy, broccoli, broccoflower, Brussels sprouts, cabbage, cauliflower, collard greens, daikon, horseradish, kale, kohlrabi, mizuna, mustard greens, mustard seeds, radishes, rutabaga, tatsoi, turnips, wasabi, watercress [46], [47]

Kaempferol, a flavonoid found in Anasazi beans, barley, black beans, black rice, buckwheat bran, chickpeas, chia seeds, flaxseed, green beans, lentils, quinoa, red beans, rice bran [48], [49]

Luteolin, a flavonoid found in celery, lemongrass, lentils, oregano, parsley, peppermint, rice bran, rosemary, sorghum bran [50], [51]

Naringenin, a flavonoid found in almonds, all citrus fruit, black rice, rice bran, sorghum bran [52], [53]

Omega-3 fatty acids, found in chia seeds, Brussels sprouts, flax seeds, hemp seeds, kiwi fruit, lingonberries, perilla seed oil, walnuts [54], [55]

Probiotics – beneficial bacteria available from a wide variety of sources including supplementation  [74], [75]

Protocatechuic acid, a polyphenol found in acai, adzuki beans, apples, avocados, bilberries, blackberries, blueberries, brown rice, buckwheat, cauliflower, dates, eggplant, garlic, hazelnuts, kiwi, lentils, mango, mangosteen, mulberries, olive oil, olives, pears, pistachio nuts, raspberries, red onion, sorghum bran, strawberries, wheat [56]. [57]

Quercetin, a polyphenol found in adzuki beans, Anasazi beans, apples, apricots, asparagus, barley, berries, black beans, black rice, broccoli, capers, cauliflower, celery, chickpeas, chia seeds, eggplant, gingko biloba, grapes, green beans, green pepper, honey, kale, lentils, lettuce, onions, quinoa, red onions, shallots, tea (black and green), tomatoes [58], [59]

Red Yeast Rice – the product of yeast (Monascus purpureus) grown on white rice, available in supplement form [76]

Resveratrol, part of a group of polyphenol compounds found in blueberries, cranberries, dark chocolate, peanuts, peanut butter, pistachio nuts, grapes, black beans, lentils, red wine, white wine [60], [61]

Saponins, triterpenoid phytochemicals found in amaranth, Anasazi beans, asparagus, barley, black beans, chickpeas, green beans, green soybeans, jiaogulan, oats, panax ginseng, quinoa, red beans, spinach, sunflower seeds, tomatoes, wheat [62], [63]

Selenium, a mineral found in amaranth, barley, Brazil nuts, brewer’s yeast, broccoli, brown rice, buckwheat bran, chickpeas, chicken, garlic, kelp, lentils, liver, macadamia nuts, molasses, oats, onions, pecans, pistachio nuts, pumpkin seeds, quinoa, red beans, salmon, seafood, spelt, sunflower seeds, walnuts, wheat, wheat bran, wheat germ [64], [65]

Vitamin C – from most fruits and vegetables [77], [78], [79]

Vitamin D3 – known as the sunshine vitamin because when sunlight hits your skin, a chemical reaction takes place which stimulates the production of vitamin D3 in the body. Also found in cod liver oil, raw milk, salmon, tuna [66], [67]

Vitamin E – Naturally occurring vitamin E exists in eight separate and unique forms called tocopherols and tocotrienols, and each form has a different potency or level of activity in the body. Found in amaranth, barley, black rice, Brazil nuts, brown rice, buckwheat bran, cashews, chickpeas, green beans, hemp seed, lentils, macadamia nuts, oats, pecans, pistachios, quinoa, red beans, rice bran, sesame seeds, spelt, walnuts, wheat, wheat bran [68], [69]

Zinc, a mineral found in adzuki beans, amaranth, barley, beets, Brazil nuts, black beans, cashews, chia seeds, flaxseed, hemp seeds, kidney/cannellini beans, lentils, macadamia nuts, oats, pistachio nuts, pumpkin seeds, quinoa, red beans, sesame seeds, soybeans, spelt, wheat, wheat bran [70], [71]

Please note that this is not an exhaustive list, there are hundreds of other anti-inflammatory foods and supplements, but these are some of the best known with the most research.

IMPORTANT NOTE: Please do not attempt to heal cancer using only a few nutrients. Cancer is a complex process and requires a multi-disciplinary approach. It’s always best to work with an oncologist and/or integrative oncologist and/or oncology naturopath and/or functional medicine doctor to achieve the best results.

For more information on other epigenetic factors that reduce breast cancer risk, please see
Part 1 nutrients that can control regulatory genes
Part 2 nutrients that can reduce damage to DNA
Part 3 nutrients that stop rapid proliferation of cells
and stay tuned for upcoming articles in this 11-part series.


[1] Anti-Inflammatory Agents for Cancer Therapy – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2843097/

[2] Phytochemicals and Cytotoxicity of Launaea procumbens on Human Cancer Cell Lines – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5068119/

[3] Anti-inflammatory potential of alpha-linolenic acid mediated through selective COX inhibition: computational and experimental data – https://www.ncbi.nlm.nih.gov/pubmed/24639012

[4] Bioaccessibility, bioavailability, and anti-inflammatory effects of anthocyanins from purple root vegetables using mono- and co-culture cell models – https://www.ncbi.nlm.nih.gov/pubmed/28691370

[5] Anti-Inflammatory and Anticancer Activities of Taiwanese Purple-Fleshed Sweet Potatoes (Ipomoea batatas L. Lam) Extracts – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4609785/

[6] Apigenin inhibits TNFa/IL-1a-induced CCL2 release through IKBK-epsilon signaling in MDA-MB-231 human breast cancer cells – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404872/

[7] Apigenin: A dietary flavonoid with diverse anticancer properties – https://www.ncbi.nlm.nih.gov/pubmed/29097249

[8] Synthesis and Identification of Novel Berberine Derivatives as Potent Inhibitors against TNF-a-Induced NF-kB Activation – https://www.ncbi.nlm.nih.gov/pubmed/28749438

[9] Berberis vulgaris and its constituent berberine as antidotes and protective agents against natural or chemical toxicities – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5478782/

[10] Beta-Sitosterol: A Promising but Orphan Nutraceutical to Fight Against Cancer – https://www.ncbi.nlm.nih.gov/pubmed/26473555

[11] Beta-Sitosterol, Beta-Sitosterol Glucoside, and a Mixture of Beta-Sitosterol and Beta-Sitosterol Glucoside Modulate the Growth of Estrogen- Responsive Breast Cancer Cells In Vitro and in Ovariectomized Athymic Mice – https://www.ncbi.nlm.nih.gov/pubmed/15113961

[12] Anti-inflammatory effects of betaine on AOM/DSS-induced colon tumorigenesis in ICR male mice – https://www.ncbi.nlm.nih.gov/pubmed/24969167

[13] Betaine reduces the expression of inflammatory adipokines caused by hypoxia in human adipocytes – https://www.ncbi.nlm.nih.gov/pubmed/22424556

[14] Main Isoflavones Found in Dietary Sources as Natural Anti-inflammatory Agents – https://www.ncbi.nlm.nih.gov/pubmed/29141545

[15] Biochanin A attenuates LPS-induced pro-inflammatory responses and inhibits the activation of the MAPK pathway in BV2 microglial cells – https://www.ncbi.nlm.nih.gov/pubmed/25483920

[16] Anti-inflammatory activity of caffeic acid derivatives isolated from the roots of Salvia miltiorrhiza Bunge – https://www.ncbi.nlm.nih.gov/pubmed/29124660

[17] Dietary Intervention by Phytochemicals and Their Role in Modulating Coding and Non-Coding Genes in Cancer – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5486001/

[18] Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review – http://www.sciencedirect.com/science/article/pii/S0278691502000376

[19] Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages – http://www.sciencedirect.com/science/article/pii/S0898656802000864

[20] Anti-inflammatory actions of green tea catechins and ligands of peroxisome proliferator-activated receptors – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2517497/

[21] Chlorophyll revisited: anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-a gene by the same – https://www.ncbi.nlm.nih.gov/pubmed/22038065

[22] Conjugated linoleic acid isomers and cancer – https://www.ncbi.nlm.nih.gov/pubmed/18029471

[23] Downregulation of inflammatory markers by conjugated linoleic acid isomers in human cultured astrocytes – https://www.ncbi.nlm.nih.gov/pubmed/28847225

[24] Conjugated linoleic acid (CLA) modulates prostaglandin E2 (PGE2) signaling in canine mammary cells – https://www.ncbi.nlm.nih.gov/pubmed/16619484

[25] Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells – https://www.ncbi.nlm.nih.gov/pubmed/10190560

[26] Curcumin potentiates the potent antitumor activity of ACNU against glioblastoma by suppressing the PI3K/AKT and NF-kB/COX-2 signaling pathways – https://www.ncbi.nlm.nih.gov/pubmed/29180881

[27] Epigenetic diet: impact on the epigenome and cancer – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197720/

[28] Evaluation of the anti-inflammatory effects of ellagic acid – https://www.ncbi.nlm.nih.gov/pubmed/20656257

[29] Anti-inflammatory and antiedematogenic activity of the Ocimum basilicum essential oil and its main compound estragole: In vivo mouse models – https://www.ncbi.nlm.nih.gov/pubmed/27474066

[30] Alkaloids from Piper nigrum Exhibit Antiinflammatory Activity via Activating the Nrf2/HO-1 Pathway – https://www.ncbi.nlm.nih.gov/pubmed/28185326

[31] Studies on the anti-inflammatory and analgesic activity of Cedrus deodara (Roxb.) Loud. wood oil – https://www.ncbi.nlm.nih.gov/pubmed/10350366

[32] Antiinflammatory Activity of Cinnamon (Cinnamomum zeylanicum) Bark Essential Oil in a Human Skin Disease Model – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5518441/

[33] Oral administration of d-limonene controls inflammation in rat colitis and displays anti-inflammatory properties as diet supplementation in humans – https://www.ncbi.nlm.nih.gov/pubmed/23665426

[34] Anti-inflammatory activity of clove (Eugenia caryophyllata) essential oil in human dermal fibroblasts – https://www.ncbi.nlm.nih.gov/pubmed/28407719

[35] Anti-inflammatory activity of oleoresin from Brazilian Copaifera – https://www.ncbi.nlm.nih.gov/pubmed/3352280

[36] A Review of Anti-inflammatory Terpenoids from the Incense Gum Resins Frankincense and Myrrh – https://www.ncbi.nlm.nih.gov/pubmed/28381769

[37] Review of Anti-Inflammatory Herbal Medicines – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4877453/

[38] Lavandula angustifolia Mill. Essential Oil Exerts Antibacterial and Anti-Inflammatory Effect in Macrophage Mediated Immune Response to Staphylococcus aureus – https://www.ncbi.nlm.nih.gov/pubmed/26730790

[39] Biological activities of Rosmarinus officinalis L. (rosemary) extract as analyzed in microorganisms and cells – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685262/

[40] Evaluation of anti-inflammatory activity of ethanolic extract of Cananga odorata Lam in experimental animals – http://www.ijbcp.com/index.php/ijbcp/article/view/926

[41] High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease – http://www.sciencedirect.com/science/article/pii/S0085253815552903

[42] Effects of dietary fiber intake on inflammation in chronic diseases – http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1679-45082010000200254

[43] Gamma linolenic acid, an antiinflammatory omega-6 fatty acid – https://www.researchgate.net/profile/Rakesh_Kapoor4/publication/6630684_Gamma_Linolenic_Acid_An_Antiinflammatory_Omega-6_Fatty_Acid/links/56df449308aec4b3333b6ecc.pdf

[44] Complementary actions of docosahexaenoic acid and genistein on COX-2, PGE2 and invasiveness in MDA-MB-231 breast cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/17052999

[45] Antioxidants, anti-inflammatory, and antidiabetic effects of the aqueous extracts from Glycine species and its bioactive compounds – https://www.ncbi.nlm.nih.gov/pubmed/28597448

[46] Brassica-Derived Plant Bioactives as Modulators of Chemopreventive and Inflammatory Signaling Pathways – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5618539/

[47] Sulforaphane protects against acrolein-induced oxidative stress and inflammatory responses: modulation of Nrf-2 and COX-2 expression – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4947616/

[48] STAT3 and NF-kB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5613220/

[49] Kaempferol Alleviates the Interleukin-1ß-Induced Inflammation in Rat Osteoarthritis Chondrocytes via Suppression of NF-kB – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566200/

[50] Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype – https://jneuroinflammation.biomedcentral.com/articles/10.1186/1742-2094-7-3

[51] Luteolin and chrysin differentially inhibit cyclooxygenase-2 expression and scavenge reactive oxygen species but similarly inhibit prostaglandin-E2 formation in RAW 264.7 cells – https://www.ncbi.nlm.nih.gov/pubmed/16702314

[52] Naringenin: an analgesic and anti-inflammatory citrus flavanone – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5354790/

[53] Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action – http://advances.nutrition.org/content/5/4/404.full

[54] Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575932/

[55] Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167467/

[56] Comparison of the Neuroprotective and Anti-Inflammatory Effects of the Anthocyanin Metabolites, Protocatechuic Acid and 4-Hydroxybenzoic Acid – https://www.hindawi.com/journals/omcl/2017/6297080/

[57] Anti-inflammatory and analgesic activity of protocatechuic acid in rats and mice – https://www.ncbi.nlm.nih.gov/pubmed/21748471

[58] Quercetin attenuates collagen-induced arthritis by restoration of Th17/Treg balance and activation of Heme Oxygenase 1-mediated anti-inflammatory effect -https://www.ncbi.nlm.nih.gov/pubmed/29149703

[59] Quercetin, Inflammation and Immunity – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808895/

[60] Resveratrol Directly Targets COX-2 to Inhibit Carcinogenesis – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2562941/

[61] The inhibitory effect of resveratrol on COX-2 expression in human colorectal cancer: a promising therapeutic strategy – https://www.ncbi.nlm.nih.gov/pubmed/28338176

[62] Gynostemma pentaphyllum saponins attenuate inflammation in vitro and in vivo by inhibition of NF-kB and STAT3 signaling – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5675642/

[63] Two new dammarane-type triterpene saponins from Korean red ginseng and their anti-inflammatory effects – https://www.ncbi.nlm.nih.gov/pubmed/29100799

[64] The Role of Selenium in Inflammation and Immunity: From Molecular Mechanisms to Therapeutic Opportunities – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277928/

[65] Selenium regulates cyclooxygenase-2 and extracellular signal-regulated kinase signaling pathways by activating AMP-activated protein kinase in colon cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/17047069

[66] Vitamin D improves inflammatory bowel disease outcomes: Basic science and clinical review – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4009525/

[67] Vitamin D and Breast Cancer – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267821/

[68] Natural Forms of Vitamin E as Effective Agents for Cancer Prevention and Therapy – https://www.ncbi.nlm.nih.gov/pubmed/29141970

[69] Natural forms of vitamin E: metabolism, antioxidant and anti-inflammatory activities and the role in disease prevention and therapy – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120831/

[70] Evaluation of Antioxidant Intakes in Relation to Inflammatory Markers Expression Within the Normal Breast Tissue of Breast Cancer Patients – https://www.ncbi.nlm.nih.gov/pubmed/27903840

[71] Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4429650/

[72] Cyanidin-3-O-ß-glucoside inhibits lipopolysaccharide-induced inflammatory response in mouse mastitis model – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4031942/

[73] Anti-inflammatory and antioxidative effects of mucilage of Trigonella foenum graecum (Fenugreek) on adjuvant induced arthritic rats – https://www.sciencedirect.com/science/article/pii/S1567576911004528

[74] The Effects of Probiotic Supplementation on Gene Expression Related to Inflammation, Insulin, and Lipids in Patients With Multiple Sclerosis: A Randomized, Double-Blind, Placebo-Controlled Trial – https://www.ncbi.nlm.nih.gov/pubmed/28922099

[75] Evidence of the Anti-Inflammatory Effects of Probiotics and Synbiotics in Intestinal Chronic Diseases – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5490534/

[76] Red yeast rice improves lipid pattern, high-sensitivity C-reactive protein, and vascular remodeling parameters in moderately hypercholesterolemic Italian subjects – https://www.ncbi.nlm.nih.gov/pubmed/23890351

[77] Plasma C-reactive protein concentrations in active and passive smokers: influence of antioxidant supplementation – https://www.ncbi.nlm.nih.gov/pubmed/15047680

[78] Cross-over study of influence of oral vitamin C supplementation on inflammatory status in maintenance hemodialysis patients – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840610/’

[79] Effect of vitamin C on inflammation and metabolic markers in hypertensive and/or diabetic obese adults: a randomized controlled trial – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492638/

GET MY BEST TIPS on getting through breast cancer and preventing recurrences by signing up for my free e-newsletters and e-books on the right. You can also “like” me on Facebook (Marnie Clark, Breast Health Coach) to get my inspirational snippets, news and updates. I promise to do my utmost to keep you informed and empowered on your healing journey… and beyond.