Tag Archives: breast cancer and nutrition

Epigenetic Factors to Reduce Breast Cancer Risk – Part 3

Image source: rgbstock.com / Tomislav Alajbeg

Epigenetic Factors To Reduce Breast Cancer Risk – Part 3

In this series of articles, it is my goal to empower you with information about the epigenetic factors that can be used to not only reduce breast cancer risk, but also to help heal yourself from breast cancer if you have had the misfortune of a diagnosis.

For more information on my personal reasons for putting this information together, see Part 1 of the series.

This article, Part 3 in the series, will cover the nutrients that prevent rapid cell proliferation. Proliferation means a rapid increase in the number or amount of something, and in this case it means cancer cells. Their ability to multiply and rapidly grow is one of the hallmarks of cancer. Many anti-cancer drugs such as chemotherapy target this very thing. Unfortunately, however, these drugs come at a price because they don’t just target rapidly growing cancer cells, they target every cell that is rapidly growing. The beauty of epigenetic nutrients is that they don’t target healthy cells that are rapidly growing – they leave them alone.


The nutrients listed below are capable of blocking the continuous multiplication of the cellular replication cycle, thus stopping or slowing cancer cell growth. Few of them have been included in human trials, so we don’t have exact doses, but we can certainly include them as part of a healthy anti-cancer diet.

1. Alpha linolenic acid, derived from chia, flaxseed, hemp seeds, pecans, pistachio nuts, pumpkin seeds, walnuts [1]
2. Apigenin, derived from celery, parsley, onions, grapefruit, oranges  [2], [3]
3. Berberine, derived from goldenseal, barberry, Oregon grape, Huang bai, tree turmeric [4], [5]
4. Beta-sitosterol, derived from rice bran, pistachio nuts, walnuts, almonds, pecans, pumpkin seeds, sesame seeds, sunflower seeds [6]
5. Caffeic acid, derived from adzuki beans, apples, apicots, buckwheat bran, brown rice, chia seeds, chickpeas, coffee, hazelnuts, lentils, sunflower seeds [7]. Caffeic acid also reduces the growth of cancer stem cells [8].
6. Catechin and epicatechin, derived from adzuki beans, almonds, apricots, bilberries, chickpeas, green beans, green tea, lentils, pecans [9] [10].
7. Chlorophyll, derived from all green plants, pumpkin seeds, fresh herbs, blue-green algae, sprouts, wheatgrass, matcha tea, sea weed, grapes, green beans [11] .
8. Curcumin, derived from turmeric [12].
9. Delphinidin, derived from black beans, blackcurrants  [13].
10. Eicosapentaenoic acid (EPA), derived from chia seeds, flaxseed, hemp seeds [14].
11. Ellagic acid, derived from apples, raspberries, black raspberries, blackberries, Brazil nuts, pecans, walnuts, pomegranates, wild strawberries, cranberries [15].
12. Enterolactone, derived from steel cut oats, flaxseed [16].
13. Epigallocatechin gallate (EGCG), derived from green tea [17].
14. Eugenol, derived from cinnamon, clove [18], [19].
15. Ferulic acid, derived from apricots, grapes, rice bran, brown rice, black beans, chickpeas, dong quai, hazelnuts, sesame seeds [20], [21]. 16. Formononetin, derived from red clover  [22].
17. Jasmonic acid, derived from apples, chickpeas, jasmine essential oil  [23].
18. Juglone, derived from walnuts [24].
19. Kaempferol, derived from black beans, chickpeas, chia seeds, green beans, lentils [25].
20. Lectins, derived from Anasazi beans and other beans, mushrooms [26].
21. Lutein, derived from kale, broccoli, pecans, pistachio nuts, pumpkin seeds, walnuts, green beans  [27].
22. Lycopene, derived from apricots, tomatoes [28], [29].
23. Medicinal Mushrooms – many medicinal mushrooms (such as reishi, turkey tail, shiitake, etc) have anti-proliferatory properties, see my article  Medicinal Mushrooms – Fungi That Fight Cancer Cells to see which ones.
24. Melatonin, derived from black rice, walnuts, barley, bananas [30].
25. Momilactone B, derived from brown rice [31].
26. Protocatechuic acid, derived from acai, adzuki beans, apples, avocados, brown rice, hazelnuts, pistachio nuts, bilberries, blackberries, blueberries, buckwheat, cauliflower, dates, eggplant, garlic, kiwi, lentils, mango, mangosteen, mulberries, olive oil, olives, pears, raspberries, red onion, strawberries [32].
27. Pterostilbene, derived from blueberries, cranberries, lingonberries, grapes [33].
28. Quercetin, derived from adzuki beans, apples, apricots, bilberries, black beans, chickpeas, chia seeds, green beans, lentils [34].
29. Saponins, derived from amaranth, asparagus, black beans, green beans, sunflower seeds, soybeans, oats, spinach, chickpeas, quinoa, tomatoes, Panax ginseng  [35], [36].
30. Selenium, derived from wheat germ, wheat bran, Brazil nuts, pecans, brewer’s yeast, broccoli, brown rice, chicken, garlic, kelp, lentils, liver, molasses, onions, salmon, seafood, vegetables, whole grains, chickpeas, pistachio nuts, pumpkin seeds, sunflower seeds, walnuts [37].
31. Sesamin and sesamol, derived from sesame seeds [38].
32. Sinapic acid, derived from brown rice, citrus fruits, lentils, sunflower seeds [39].
33. Sulforaphane, derived from cruciferous vegetables [40].
34. Syringic acid, derived from walnuts, chard, molasses, millet [41].
35. Triticuside A, derived from wheat bran [42].
36. Vitamin E, derived from black rice, brown rice, cashews, chickpeas, lentils, pecans, pistachio nuts, sesame seeds, walnuts, green beans, rice bran, wheat bran [43].

Please note that this is not an exhaustive list, there are likely many other substances that will prevent rapid cell proliferation. But this will definitely get you started in the right direction!

For more information on other epigenetic factors that reduce breast cancer risk, please see:
Part 1 nutrients that can control regulatory genes
Part 2 nutrients that can reduce damage to DNA
and stay tuned for upcoming articles in this 12-part series.


[1] a-Linolenic Acid Reduces Growth of Both Triple Negative and Luminal Breast Cancer Cells in High and Low Estrogen Environments – https://www.ncbi.nlm.nih.gov/pubmed/26134471

[2] Exposure of breast cancer cells to a subcytotoxic dose of apigenin causes growth inhibition, oxidative stress, and hypophosphorylation of Akt – https://www.ncbi.nlm.nih.gov/pubmed/25019465

[3] Induction of caspase-dependent extrinsic apoptosis by apigenin through inhibition of signal transducer and activator of transcription 3 (STAT3) signalling in HER2-overexpressing BT-474 breast cancer cells – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708008/

[4] Berberine Enhances Chemosensitivity and Induces Apoptosis Through Dose-orchestrated AMPK Signaling in Breast Cancer – https://www.ncbi.nlm.nih.gov/pubmed/28775788

[5] Interaction of Herbal Compounds with Biological Targets: A Case Study with Berberine – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504405/

[6] Beta-Sitosterol, Beta-Sitosterol Glucoside, and a Mixture of Beta-Sitosterol and Beta-Sitosterol Glucoside Modulate the Growth of Estrogen- Responsive Breast Cancer Cells In Vitro and in Ovariectomized Athymic Mice – https://www.ncbi.nlm.nih.gov/pubmed/15113961

[7] Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC400651

[8] Blockage of TGFß-SMAD2 by demethylation-activated miR-148a is involved in caffeic acid-induced inhibition of cancer stem cell-like properties in vitro and in vivo – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475776/

[9] Breast cancer chemopreventive and chemotherapeutic effects of Camellia Sinensis (green tea): an updated review – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5410915

[10] Suppressive Effects of Tea Catechins on Breast Cancer – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4997373/

[11] The chlorophyllin-induced cell cycle arrest and apoptosis in human breast cancer MCF-7 cells is associated with ERK deactivation and Cyclin D1 depletion – https://www.ncbi.nlm.nih.gov/pubmed/16142413

[12] Curcumin Suppresses Proliferation and Migration of MDA-MB-231 Breast Cancer Cells through Autophagy-Dependent Akt Degradation – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4708990/

[13] Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2989819/

[14] Eicosapentaenoic acid suppresses cell proliferation in MCF-7 human breast cancer xenografts in nude rats via a pertussis toxin-sensitive signal transduction pathway – https://www.ncbi.nlm.nih.gov/pubmed/16140887

[15] Ellagic acid induces cell cycle arrest and apoptosis through TGF-ß/Smad3 signaling pathway in human breast cancer MCF-7 cells – https://www.ncbi.nlm.nih.gov/pubmed/25647396

[16] Estrogen-induced angiogenic factors derived from stromal and cancer cells are differently regulated by enterolactone and genistein in human breast cancer in vivo – https://www.ncbi.nlm.nih.gov/pubmed/19924815

[17] EGFR inhibition by (-)-epigallocatechin-3-gallate and IIF treatments reduces breast cancer cell invasion – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434892/

[18] Eugenol Triggers Apoptosis in Breast Cancer Cells Through E2F1/survivin. Down-regulation – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3931838/

[19] Chemosensitivity of MCF-7 cells to eugenol: release of cytochrome-c and lactate dehydrogenase – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341120/

[20] Lipophilic caffeic and ferulic acid derivatives presenting cytotoxicity against human breast cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/21504213

[21] Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC400651/

[22] Formononetin induces cell cycle arrest of human breast cancer cells via IGF1/PI3K/Akt pathways in vitro and in vivo – https://www.ncbi.nlm.nih.gov/pubmed/21932171/

[23] Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/11960340

[24] Effect of Pin1 inhibitor juglone on proliferation, migration and angiogenic ability of breast cancer cell line MCF7Adr – https://www.ncbi.nlm.nih.gov/pubmed/26223922

[25] Kaempferol, a Flavonoid Compound from Gynura Medica Induced Apoptosis and Growth Inhibition in MCF-7 Breast Cancer Cell – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5566146/

[26] A Hemagglutinin from Northeast Red Beans with Immunomodulatory Activity and Anti-proliferative and Apoptosis-inducing Activities Toward Tumor Cells – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5300056/

[27] Selective Carotenoid Growth Inhibition in Breast Cancer: Independence of Hormonal Sensitivity – http://www.fasebj.org/content/29/1_Supplement/32.3.short

[28] Selective inhibition of cell proliferation by lycopene in MCF-7 breast cancer cells in vitro: a proteomic analysis – https://www.ncbi.nlm.nih.gov/pubmed/22718574

[29] Selective Carotenoid Growth Inhibition in Breast Cancer: Independence of Hormonal Sensitivity – http://www.fasebj.org/content/29/1_Supplement/32.3.short

[30] Melatonin receptors, melatonin metabolizing enzymes and cyclin D1 in human breast cancer – https://www.ncbi.nlm.nih.gov/pubmed/21385053

[31] Enhancement of hypoxia-induced apoptosis of human breast cancer cells via STAT5b by momilactone B – https://www.ncbi.nlm.nih.gov/pubmed/18695876

[32] Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC400651/

[33] Pterostilbene simultaneously induces apoptosis, cell cycle arrest and cyto-protective autophagy in breast cancer cells – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3276376/

[34] Quercetin induces apoptosis and necroptosis in MCF-7 breast cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/28814095

[35]  Saponins as cytotoxic agents: a review – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928447/

[36] Anti-proliferating effects of ginsenoside Rh2 on MCF-7 human breast cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/10200336

[37] Selenium and Breast Cancer Risk: Focus on Cellular and Molecular Mechanisms http://www.sciencedirect.com/science/article/pii/S0065230X17300374 /

[38] Effect of sesamin on apoptosis and cell cycle arrest in human breast cancer mcf-7 cells – https://www.ncbi.nlm.nih.gov/pubmed/25987037

[39] Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC400651/

[40] Sulforaphane–a possible agent in prevention and therapy of cancer – https://www.ncbi.nlm.nih.gov/pubmed/21160094/

[41] Phenolic and carotenoid profiles and antiproliferative activity of foxtail millet – https://www.ncbi.nlm.nih.gov/pubmed/25529711

[42] Triticuside A, a Dietary Flavonoid, Inhibits Proliferation of Human Breast Cancer Cells via Inducing Apoptosis – https://www.ncbi.nlm.nih.gov/pubmed/23909734

[43]  Inhibitory Effects of Gamma- and Delta-Tocopherols on Estrogen- Stimulated Breast Cancer In Vitro and In Vivo – https://www.ncbi.nlm.nih.gov/pubmed/28096236 /

GET MY BEST TIPS on getting through breast cancer and preventing recurrences by signing up for my free e-newsletters and e-books on the right. You can also “like” me on Facebook (Marnie Clark, Breast Health Coach) to get my inspirational snippets, news and updates. I promise to do my utmost to keep you informed and empowered on your healing journey… and beyond.

Epigenetic Factors to Reduce Breast Cancer Risk – Part 2

Image Source: rgbstock.com / Tomislav Alajbeg

Epigenetic Factors to Reduce Breast Cancer Risk – Part 2

One of the most fascinating areas of breast cancer research has to be the field of epigenetics and how genes can be expressed differently by using external factors, all without altering the DNA structure of those genes. At first ridiculed by the scientific community, epigenetics is now one of the fastest growing fields of science.

Continuing on from Part 1 in my series of epigenetic factors to reduce breast cancer risk, this article will cover the nutrients that help to prevent damage to DNA.


As with many other types of cancer, breast cancer generally begins with something happening to alter the DNA function or structure of just one cell. This can trigger that cell to become malignant and a tumor to form, and that process can take months or years, depending upon hundreds of different factors. Other things that are happening when the tumor is forming (to put it in simplest terms) is that a tumor suppressor gene has become silenced or a tumor promoter gene has been activated and allows unchecked cell replication.

The good news is that many nutrients have the ability to prevent and protect against DNA damage. Here is the list of the best 20.

The Top 20 Nutrients that Prevent DNA Damage

1. Curcumin, derived from turmeric [1], [2], [3], [48]

2. Epigallocatechin gallate (EGCG), derived from green tea [4], [5], [6], [47], [48]

3. Coenzyme Q10 [7], [8], [9]

4. Di-indolyl-methane (DIM) [10], [11], [48]

5. Coffee [12], [13]

6. N-acetylcysteine (NAC) [14], [15], [23]

7. Melatonin, a natural hormone [16], [17]

8. Lycopene, derived from tomato, watermelon, guava, papaya [18], [19]

9. Pomegranate [20], [21], [22]

10. Resveratrol, derived from grapes, blueberries [23], [24], [25], [48]

11. Selenium [26], [27], [48]

12. Silibinin and silymarin, derived from milk thistle [28], [29], [30], [31], [53]

13. Sulforaphane, derived from cruciferous vegetables [32], [33], [34], [48]

14. Tocotrienols, derived from vitamin E [35], [36], [37], [38]

15. Genistein and diadzein, derived from soybeans [39], [40], [41], [48]

16. Garlic and onions [42], [43], [44], [45], [48]

17. Quercetin [46], [47], [48]

18. Luteolin, derived from celery, oregano, thyme, chili peppers [47], [49], [50], [52]

19. Apigenin, derived from celery, parsley, onions, grapefruit, oranges, chamomile tea [47], [51], [52]

20. Chrysin, derived from passionflower [47], [52], [53]

Mind-Body Interventions Also Play A Role in DNA Repair

A recent study [54] carried out by scientists from Coventry University In the UK and Radboud University in the Netherlands demonstrated that mind-body interventions can have an enormous impact on DNA repair. The study analyzed more than 10 years worth of research studies on how mind-body interventions impact DNA and they found that things like yoga, meditation and Tai Chi can actually reverse the deleterious effects that things like stress and other factors might otherwise have on DNA.

The researchers found that people who regularly practice mind-body interventions enjoy a reduction in the production of inflammatory markers. This in turn leads to a reduction and reversal of pro-inflammatory gene expression, thus lowering  the risk of inflammation-related conditions. And as we know, breast cancer is definitely an inflammatory condition. Have a look at the study, it’s reference #54 below.

While this is not an exhaustive list, it will certainly give you a great idea how many natural substances help to protect DNA and reduce breast cancer risk. For more information on the subject of epigenetic factors that reduce breast cancer risk, please see Part 1 of this series of articles which discussed nutrients that can control regulator genes and stay tuned for upcoming articles in this 12-part series.


[1] Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NfkappaB – https://www.ncbi.nlm.nih.gov/pubmed/17999991

[2] Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines – https://www.ncbi.nlm.nih.gov/pubmed/16101141

[3] Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/ß-catenin negative feedback loop – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445824/

[4] Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/18059161

[5] Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5481703/

[6] Mechanism of EGCG promoting apoptosis of MCF-7 cell line in human breast cancer – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5588052/

[7] Augmented efficacy of tamoxifen in rat breast tumorigenesis when gavaged along with riboflavin, niacin, and CoQ10: effects on lipid peroxidation and antioxidants in mitochondria – https://www.ncbi.nlm.nih.gov/pubmed/15766922

[8] Coenzyme Q10 concentrations and antioxidant status in tissues of breast cancer patients – https://www.ncbi.nlm.nih.gov/pubmed/10936586

[9] Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3004807/

[10] Inhibitory effects of 3,3′-diindolylmethane on epithelial-mesenchymal transition induced by endocrine disrupting chemicals in cellular and xenograft mouse models of breast cancer – https://www.ncbi.nlm.nih.gov/pubmed/28844962

[11] Chemopreventive properties of 3,3′-diindolylmethane in breast cancer: evidence from experimental and human studies – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5059820/

[12] Coffee consumption rapidly reduces background DNA strand breaks in healthy humans: Results of a short-term repeated uptake intervention study – https://www.ncbi.nlm.nih.gov/pubmed/26632023

[13] Inhibition of DNA methylation by caffeic acid and chlorogenic acid, two common catechol-containing coffee polyphenols – https://www.ncbi.nlm.nih.gov/pubmed/16081510

[14] N-acetyl-cysteine promotes angiostatin production and vascular collapse in an orthotopic model of breast cancer – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1615662/

[15] N-Acetyl-L-cysteine protects thyroid cells against DNA damage induced by external and internal irradiation – https://www.ncbi.nlm.nih.gov/pubmed/28871381

[16] Melatonin modulates aromatase activity and expression in endothelial cells – https://www.ncbi.nlm.nih.gov/pubmed/23450505

[17] Melatonin modulates aromatase activity in MCF-7 human breast cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/15683469

[18] In vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/28407181

[19] Lycopene acts through inhibition of IkB kinase to suppress NF-kB signaling in human prostate and breast cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/26779636

[20] The antioxidant potency of Punica granatum L. Fruit peel reduces cell proliferation and induces apoptosis on breast cancer – https://www.ncbi.nlm.nih.gov/pubmed/21861726

[21] Pomegranate Fruit as a Rich Source of Biologically Active Compounds – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000966/

[22] Antiproliferative effects of pomegranate extract in MCF-7 breast cancer cells are associated with reduced DNA repair gene expression and induction of double strand breaks – https://www.ncbi.nlm.nih.gov/pubmed/23359482

[23] Resveratrol and N-acetylcysteine block the cancer-initiating step in MCF-10F cells – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425208/

[24] Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway – https://www.ncbi.nlm.nih.gov/pubmed/29029468

[25] Antioxidant activities of novel resveratrol analogs in breast cancer – https://www.ncbi.nlm.nih.gov/pubmed/28960787

[26] Dietary Supplementation with Methylseleninic Acid Inhibits Mammary Tumorigenesis and Metastasis in Male MMTV-PyMT Mice – https://www.ncbi.nlm.nih.gov/pubmed/29032404

[27] Selenium modifies the osteoblast inflammatory stress response to bone metastatic breast cancer – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791325/

[28] Silibinin suppresses EGFR ligand-induced CD44 expression through inhibition of EGFR activity in breast cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/22110198

[29] Silibinin prevents TPA-induced MMP-9 expression by down-regulation of COX-2 in human breast cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/19715751

[30] Silibinin inhibits translation initiation: implications for anticancer therapy – https://www.ncbi.nlm.nih.gov/pubmed/19509268

[31] Silibinin induces protective superoxide generation in human breast cancer MCF-7 cells – https://www.ncbi.nlm.nih.gov/pubmed/19968587

[31] Anticarcinogenic effect of a flavonoid antioxidant, silymarin, in human breast cancer cells MDA-MB 468: induction of G1 arrest through an increase in Cip1/p21 concomitant with a decrease in kinase activity of cyclin-dependent kinases and associated cyclins – https://www.ncbi.nlm.nih.gov/pubmed/9563902

[32] Efficacy of sulforaphane is mediated by p38 MAP kinase and caspase-7 activations in ER-positive and COX-2-expressed human breast cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/18090122

[33] Sulforaphane-Induced Cell Cycle Arrest and Senescence are accompanied by DNA Hypomethylation and Changes in microRNA Profile in Breast Cancer Cells – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5596436/

[34] A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer Cells – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5455001/

[35] Gamma-tocotrienol controls proliferation, modulates expression of cell cycle regulatory proteins and up-regulates quinone reductase NQO2 in MCF-7 breast cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/20683025

[36] Role of Rac1/WAVE2 Signaling in Mediating the Inhibitory Effects of Gamma-Tocotrienol on Mammary Cancer Cell Migration and Invasion – https://www.ncbi.nlm.nih.gov/pubmed/27904039

[37] Tocotrienols and breast cancer: the evidence to date – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250526/

[38] Gamma-tocotrienol induced apoptosis is associated with unfolded protein response in human breast cancer cells – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3123668/

[39] DNA Methylation Targets Influenced by Bisphenol A and/or Genistein Are Associated with Survival Outcomes in Breast Cancer Patients – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5448018/

[40] The Role of Soy Phytoestrogens on Genetic and Epigenetic Mechanisms of Prostate Cancer – https://www.ncbi.nlm.nih.gov/pubmed/26298461

[41] Multi-targeted Therapy of Cancer by Genistein – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575691/

[42] 2-Methylpyridine-1-ium-1-sulfonate from Allium hirtifolium: An anti-angiogenic compound which inhibits growth of MCF-7 and MDA-MB-231 cells through cell cycle arrest and apoptosis induction – https://www.ncbi.nlm.nih.gov/pubmed/28624423

[43] In vitro Antiproliferative and Apoptosis Inducing Effect of Allium atroviolaceum Bulb Extract on Breast, Cervical, and Liver Cancer Cells – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5281556/

[44] Diallyl trisulfide, a chemopreventive agent from Allium vegetables, inhibits alpha-secretases in breast cancer cells – https://www.ncbi.nlm.nih.gov/pubmed/28161636

[45] The Effects of Allicin, a Reactive Sulfur Species from Garlic, on a Selection of Mammalian Cell Lines – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384165/

[46] Quercetin exerts synergetic anti-cancer activity with 10-hydroxy camptothecin – https://www.ncbi.nlm.nih.gov/pubmed/28822757

[47] Plant flavonoids in cancer chemoprevention: role in genome stability – https://www.ncbi.nlm.nih.gov/pubmed/27951449

[48] Cancer Chemoprotection Through Nutrient-mediated Histone Modifications – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5012963/

[49] Luteolin inhibits lung metastasis, cell migration, and viability of triple-negative breast cancer cells – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207335/

[50] Luteolin suppresses the metastasis of triple-negative breast cancer by reversing epithelial-to-mesenchymal transition via downregulation of ß-catenin expression – https://www.ncbi.nlm.nih.gov/pubmed/27959422

[51] Inhibition of MDA-MB-231 breast cancer cell proliferation and tumor growth by apigenin through induction of G2/M arrest and histone H3 acetylation-mediated p21WAF1/CIP1 expression – https://www.ncbi.nlm.nih.gov/pubmed/26872304

[52] Dietary Flavones as Dual Inhibitors of DNA Methyltransferases and Histone Methyltransferases – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5033486/

[53] Synergistic Anticancer Effects of Silibinin and Chrysin in T47D Breast Cancer Cells – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5555536/

[54] What Is the Molecular Signature of Mind–Body Interventions? A Systematic Review of Gene Expression Changes Induced by Meditation and Related Practices – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5472657/

DISCLAIMER: The purpose of this article is to provide information. It should not be interpreted as medical advice, and is not intended to diagnose, treat or cure any medical condition, or to be a substitute for advice from your health care professional. If you have breast cancer, it is important that you work closely with a health care professional to properly treat your condition and monitor your progress.

GET MY BEST TIPS on getting through breast cancer and preventing recurrences by signing up for my free e-newsletters and e-books on the right. You can also “like” me on Facebook (Marnie Clark, Breast Health Coach) to get my inspirational snippets, news and updates. I promise to do my utmost to keep you informed and empowered on your healing journey… and beyond.

YouTube Videos by Dr Michael Greger, A Great Source of Nutrition Facts

Dr Michael Greger
Dr Michael Greger

YouTube Videos by Dr Michael Greger, A Great Source of Nutrition Facts

One of my favorite sources of nutrition facts and information are Dr Michael Greger’s YouTube videos.  They are full of great information on nutrition, all backed by research and common-sense thinking, and he really delves deeply into the subject he is discussing. He also explains it all so clearly and concisely, so that the average person can understand.

The particular things I really like about Dr Greger and his videos are his witty dialogue, the way he simplifies medical jargon as he’s reciting the facts of medical studies, and the fact that the videos are in a short, easy-to-digest format. I appreciate the fact that he reads so many studies on a particular subject, boils it all down for us into 3-4 minutes of information, and delivers the facts with a minimum of fuss. No messing around – I especially like that, when you don’t have much time to waste on finding out about something, it’s a real plus! Just the fact that he reads all of those research studies (he obviously has an inquiring mind), that alone would turn us mere mortals blue in the face. Oh, and he’s not pushing any products, another nice thing.

Some of my favorite YouTube videos by Dr Greger are:

Are Organic Foods More Nutritious?

Antimutagenic Activity of Green Tea vs White Tea 

Is Soy Healthy For Breast Cancer Survivors?

BRCA Breast Cancer Genes and Soy

Cancer Reversal Through Diet?

Apple Skin: Peeling Back Cancer

Is Distilled Fish Oil Toxin Free?

Each video is only 4-5 minutes long and definitely worth your time and attention. Go check out some of these – I think you’ll be pleasantly surprised. If you go to the NutritionFacts.org website, you will find a treasure trove of instructional videos over there on a huge variety of health subjects. Use the search field to find what you’re looking for. The YouTube channel is called NutritionFacts.org, so go on over to YouTube and subscribe to his channel and they will email you when new videos are released.

Searching for more information on breast cancer and nutrition? Visit my page Diet and Cancer.

GET MY BEST TIPS on healthy ways to beat breast cancer and prevent recurrences by signing up for my free e-newsletters and e-books on the right. You can also “like” me on Facebook (Marnie Clark, Breast Health Coach) to get my inspirational snippets, news and updates. I promise to do my utmost to keep you informed and empowered on your healing journey… and beyond.

Product Review – Happy Breast Balm

http://MarnieClark.com/happy-breast-balmProduct Review – Happy Breast Balm

Always on the lookout for great products that help to increase breast health, this one actually landed in my lap without my looking for it. A lovely lady by the name of Sue McKenna contacted me and told me about her product, Happy Breast Balm. She liked my website and thought that my readers might like to know about her product. Sue was kind enough to send me a bottle to try, along with a skin brush and instructions on how to use both. I have spent a couple of weeks using Happy Breast Balm and in this article, I’ll share with you more about it.

Sue’s story is similar to my own – we both lost our mothers to breast cancer, and then found we were battling it ourselves a few years later. Sue healed three breast lumps (diagnosis: DCIS) with all-natural therapies. Her story is inspirational, check it out:  How I Recovered from Breast Cancer Using Natural Therapies

The balm Sue describes in that article is the one I’m reviewing today, Happy Breast Balm. Sue used this balm herself , along with a huge amount of other natural therapies, described in the above article, to heal her three breast lumps.

Sue learned that (among other things) using a combination of the balm along with a specific method of dry brushing the skin using a soft skin brush provided stimulation of blood and lymphatic flow, and encouraged detoxification and nourishment to breast tissue. The dry brushing routine was inspired by the work of Dr Bruce Berkowsky (www.naturalhealthscience.com).

Each of the ingredients in Happy Breast Balm are included for very specific reasons. It contains:

* Fractionated coconut oil – A natural antioxidant and antiseptic, it facilitates the absorption of other oils in the product and is a great source of healthy triglycerides
* Organic hemp seed oil – Contains 94% of the body’s daily needs for essential fatty acids in the perfect proportion of omega 3, 6, and 9, also gamma-linolenic acid, or GLA. It’s better than both flax seed oil and fish oil. Hemp is wonderfully healing for many different conditions.
* Magnesium oil – Most of us are deficient in magnesium. Delivered transdermally (through the skin) is a very effective way to get it into the cells of the body. The body relies on magnesium for over 300 biochemical processes. Magnesium helps rid the body of toxins and acid residues, and it is required for the synthesis of vitamin D and absorption of calcium. A Swedish study reported that women with the highest magnesium intake had a 40 percent lower risk of developing cancer.
* Lugol’s iodine – Among other very important functions in the body, iodine suppresses carcinogenesis (the development of cancer) in the breast and other tissues. See my article Why Iodine and Selenium are Useful for Breast Cancer.
* Therapeutic grade essential oils – Included are lemon, grapefruit, thyme, myrtle, peppermint, frankincense, rosemary and ylang ylang. All of these essential oils have very particular anti-cancer properties. I’ve been studying essential oils for years and I can tell you that nearly every single study I’ve read on essential oils discusses their anti-cancer benefits. To see some of this research, just go to Google Scholar or www.pubmed.gov and in the search field put the name of the oil and the word “cancer”. You’ll be surprised at the many studies that have been done from countries all over the world.

More about each ingredient and why they are included appears in the website: http://www.happybreastbalm.com.au/ingredients.html

One thing that really impressed me was the reminder to use affirmations of good health, gratitude and self-love while using the products. This is so often overlooked as we go about our busy days. Take time out to do this, it really is important and makes a huge difference.

The Bottom Line:

I loved using this product. It smells amazing, the texture of it is quite divine – definitely not too oily and it is easily absorbed – and you can really feel that it is a healing product. I especially appreciated the inclusion of the organic hemp seed oil, together with therapeutic grade essential oils. The combination is just wonderful. The product comes from Australia, but Sue does offer international shipping as well.

To order, go to http://www.happybreastbalm.com/shop.html  For my readers, Sue has graciously offered a 10% discount. Just use the discount code “Marnie10″ in the checkout.

For more questions, contact Sue on sue@happybreastbalm.com.

GET MY BEST TIPS on getting through breast cancer and preventing recurrences by signing up for my free e-newsletters and e-books on the right. You can also “like” me on Facebook (Marnie Clark, Breast Health Coach) to get my inspirational snippets, news and updates. I promise to do my utmost to keep you informed and empowered on your healing journey… and beyond.

We MUST Avoid Genetically Modified Organisms

http://MarnieClark.com/we-must-avoid-genetically-modified-organisms-gmosWe MUST Avoid Genetically Modified Organisms 

In the battle against breast cancer, we absolutely must avoid genetically modified organisms (GMOs). With this article I will share with you some basic information about genetically modified organisms (GMOs), the best ways for you to avoid them, and some ways to help you be more proactive with regard to GMOs.

You would have to be a hermit living in a cave not to be aware of the fact that our food has changed drastically. In any given household you can find at least one thing in the food pantry that previous generations would not have considered to even be food.

Between food additives, contamination by toxic chemicals, and major corporations creating so-called food in a lab using ingredients never intended by nature, our food now contributes to anything but good health.

Due mainly to proactive souls on the Internet and social media, there is a ground-swell of people who are educating themselves about food quality and excellent nutrition. Shoppers the world over are now spending record amounts on organic food and that’s a really good thing.

What Are Genetically Modified Foods?

Genetically modified organisms are created in a laboratory by taking the genes/genetic information from one plant or organism and forcing it into another mainly for purposes of stronger crops, resistance to insects, and weeds. This process is quite distinct and different from the time-honored tradition of cross breeding which farmers have used for centuries to produce better crops.

In order to fully understand GMOs, I will need to provide you with a brief discussion of herbicides and pesticides because they typically work in unison.

Pesticides & Herbicides

GMO crops, pesticides and herbicides are almost always used together and the problem with this is that it creates a potentially disastrous situation for biological functions in all walks of life.

Pesticides are combinations of toxic chemicals which are sprayed onto plants as they grow to attract, kill and/or render useless the insects which would normally feed on that crop. The crops tolerant to pesticides have the genes of particular bacteria forced into the plant and this turns them into bug killers. When an insect attempts to eat the GMO plant, the toxic genes contained in the plant create holes in the insect’s stomach, which eventually kills it. Many of the chemicals utilized are listed as carcinogens by the World Health Organization (WHO).

Herbicides are toxic chemicals used to kill unwanted plants like weeds. The crops tolerant to herbicides, the most popular of which is Roundup Ready, are engineered with genes from bacteria, pieces of virus and other things that aren’t naturally found in plant crops. This is done so that they are able to tolerate large amounts of herbicide that would ordinarily kill it. This is supposed to make weeding easier because farmers are then able to spray their entire field with herbicide to kill the weeds but not the crops. Over 80 percent of the world’s GMO crops are engineered for tolerance to herbicides. The most used herbicide worldwide, glyphosate, was recently upgraded to Group 2B carcinogen status by the WHO.

The Health Ramifications of GMOs Are Grim

Any idea what’s happening to humans eating pesticide and herbicide tolerant crops? Altered gut bacteria, leaky gut syndrome, lowered immune function, auto-immune diseases, allergies, altered genes, and many other problems including increased incidence of cancer.

To further complicate matters for our health, glyphosate was patented originally to be used as a mineral chelator (chelate means to grab and bond to) so what happens is that when this chemical is sprayed onto crops, not only does it poison the soil and the crop, it also blocks our ability to utilize vital, plant-based minerals like magnesium, manganese, selenium, and calcium. We now know that mineral deficiencies have been linked to many cancers and a whole host of other diseases.

The problems don’t end there. According to the Institute for Responsible Technology, “Genes inserted into GM soy, for example, can transfer into the DNA of bacteria living inside us, and the toxic insecticide produced by GM corn was found in the blood of pregnant women and their unborn fetuses.”

Environmental Concerns

GMO crops and the herbicides associated with them also harm birds, insects, amphibians, marine life, and natural organisms found in the earth. Again quoting the Institute for Responsible Technology, “… GM crops are eliminating habitat for monarch butterflies, whose populations are down 50% in the US. Roundup herbicide has been shown to cause birth defects in amphibians, embryonic deaths and endocrine disruptions, and organ damage in animals even at very low doses. GM canola has been found growing wild in North Dakota and California, threatening to pass on its herbicide tolerant genes on to weeds.”

GMO crops have created yet another problem – they are directly responsible for the emergence of weeds and insects that are adjusting to these chemicals and becoming resistant to them so that even more toxic poisons are being required to kill them. It is known that between 1996 and 2008, US farmers had to spray an extra 383,000,000 pounds of herbicide on GMO crops because of the “super weeds” that were emerging.

To contend with this problem, chemicals such as 2,4-dichlorophenoxyacetic (aka 2,4-D) are being used, which is one of the ingredients in Agent Orange, a chemical defoliant used during the Vietnam War. And we all know what happened to soldiers and civilians who came into contact with Agent Orange – they had a hugely increased risk for cancers such as soft tissue sarcoma, prostate cancer, Hodgkin and non-Hodgkin lymphoma, lung cancer, respiratory diseases and many other forms of cancer and weird diseases.

Our government agencies are not protecting us, so – ONCE AGAIN – it’s up to us to be proactive and protect ourselves.

We absolutely must avoid GMOs if we are to heal from cancer and stay healthy. We do this buy NOT purchasing them, by refusing them. Let your pocketbook do the talking because money talks, we all know this.

The 8 Crops That Are Most Often GMO

There are currently eight genetically modified crops on the market in the USA and other parts of the world and they are:

1. Corn
2. Soybeans
3. Canola (aka Rapeseed)
4. Alfalfa
5. Beets
6. Papaya
7. Squash
8. Potatoes

The scuttlebutt is that apples will be GMO at some point in 2016. Please avoid canola altogether and only purchase the other 7 organically grown.

How To Shop for Safe Foods

1. Choose organic produce whenever you possibly can. In the USA, organic certification by the United States Department of Agriculture (USDA) means that the farm and its produce is free from prohibited chemicals, it must undergo periodic inspections, and it adheres to specific requirements for the produce grown, the environment around the farm, and other health practices.

2. The Institute for Responsible Technology has a useful non-GMO shopping guide available.

3. Download an app for your smart phone for use when you are shopping. The Buycott app uses the camera in your phone to allow you to scan barcodes and provides you with quick information about whether or not the item is GMO! How brilliant is that?

4. If you are in the USA, join the Institute for Responsible Technology’s Non-GMO Tipping Point Network.  According to Jeffrey Smith of the IRT, “We need about 5% of US shoppers – 15 million people or 5.6 million households – to choose healthier non-GMO brands in order to generate a non-GMO tipping point. It’s just a matter of reaching enough people. That’s what our educational tools and talking points are designed to do.”

Produce Buying Guide

One last bit of information for you. Thanks to the Environmental Working Group, we have the 2015 list of the 50 fruits and vegetables tested by the USDA that do have pesticide residue, and they are listed from the most residue to the least. If you must buy conventionally grown produce, concentrate on the items at the bottom of the list. The first dozen or so (termed the “dirty dozen”) really must be organically grown if you are to avoid certain chemical exposure.

1. Apples
(contains highest level of pesticide)
2. Peaches
3. Strawberries
4. Nectarines
5. Grapes
6. Celery
7. Spinach
8. Bell Peppers
9. Cucumbers
10. Cherry Tomatoes
11. Sugar Snap Peas (imported)
12. Potatoes
13. Hot Peppers
14. Blueberries (domestic)
15. Lettuce
16. Kale/Collard Greens
17. Cherries
18. Plums
19. Pears
20. Green Beans
21. Raspberries
22. Winter Squash
23. Tangerines
24. Blueberries (imported)
25. Carrots
26. Summer Squash
27. Broccoli
28. Snap Peas (domestic)
29. Green Onions
30. Bananas
31. Oranges
32. Tomatoes
33. Watermelon
34. Honeydew Melon
35. Mushrooms
36. Sweet Potatoes
37. Cauliflower
38. Cantaloupe
39. Grapefruit
40. Eggplant
41. Kiwi
42. Papayas
43. Mangos
44. Asparagus
45. Onions
46. Sweet Peas (frozen)
47. Cabbage
48. Pineapples
49. Sweet Corn (buy organic)
50. Avocados
(lowest level of pesticide)

http://responsibletechnology.org/over-half-of-the- european-unions-28-countries-representing-two-thirds-of-the-population-want-nothing-to-do-with-gmos/


Glyphosate, pathways to modern diseases II: Celiac sprue and gluten intolerance – http://www.ncbi.nlm.nih.gov/pubmed/24678255

Glyphosate, pathways to modern diseases III: Manganese, neurological diseases, and associated pathologies – http://www.ncbi.nlm.nih.gov/pubmed/25883837

Glyphosate, pathways to modern diseases IV: cancer and related pathologies – https://www.researchgate.net/publication/283490944_Glyphosate_pathways_to_modern_diseases_IV_cancer_and_related_pathologies

GET MY BEST TIPS on getting through breast cancer and preventing recurrences by signing up for my free e-newsletters and e-books on the right. You can also “like” me on Facebook (MarnieClark.com) to get my inspirational snippets, news and updates. I promise to do my utmost to keep you informed and empowered on your healing journey… and beyond.